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A fully integrated regional simulation model (RSM) has
been developed to simulate the complex hydrologic system of
South Florida. The South Florida system consists of a large in-
tegrated overland flow system, a groundwater flow system and
a canal flow system. Implicit solution methods, efficient sparse
solvers, and object oriented methods have made it possible to
solve large complex systems simultaneously with practically
any time step and cell size, even when the numerical errors can
be extremely large. The current study is aimed at understand-
ing the numerical error due to a boundary disturbance under
a variety of spatial and temporal discretizations and solution
characteristics. The errors are compared with the analytical es-
timates obtained by Lal (2000) for finite difference problems.
Results of the study are useful in determining optimal spatial
and temporal discretizations for model applications.

INTRODUCTION

Numerical models give inaccurate results if not used correctly. Numer-
ical models based on the solution of partial differential equations can
produce accurate solutions only for a limited range of spatial and tem-
poral discretizations. Outside this range, model results have an added
uncertainty. Attempts to obtain extremely accurate solutions using very
fine meshes is however prohibited due to the cost of the model run.

Numerical error can contribute to a significant portion of model
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uncertainty depending on the spatial and temporal discretization. In or-
der to keep error under control, spatial and temporal discretizations of
models have to be carefully selected. The current study is aimed at de-
termining how the numerical error of a model relates to the size of the
triangular cells, the time step length, and the characteristics of the solu-
tion in the case of the RSM model. Results of the study are presented in
dimensionless form so that they can be used in the future model applica-
tions.

Numerical errors of groundwater flow models and diffusion type
overland flow models with rectangular cells have been studied in the
past by Lal (2000a) and (2000b). These studies focused on errors due
to boundary disturbances, spatially varying rainfall patterns, transient
pumping and stream-aquifer interaction. Errors due to boundary dis-
turbances are investigated in the current study.

GOVERNING EQUATIONS
The governing equation for 2-D groundwater flow and overland flow
with negligible inertia effects can be expressed as (Akan and Yen, 1981,
Lal, 1998)
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in which, u and v are the velocities in the x and y directions; H = wa-
ter head; R = net contribution of recharge from local hydrology into the
regional system; W = source or sink terms due to pumping wells, etc.;
Sc = storage coefficient. s; = 1 for overland flow. For both overland flow
under diffusion flow assumption (Akan and Yen, 1981) and for ground-
water flow,

+W=0 (1)
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For groundwater flow, T = T(H) = transmissivity of the aquifer as a
function of the water level. For overland flow, T = C(H)S"~1 in which
C(H) is defined as the conveyance; S= water surface slope; A = an
empirical constant; d = water depth. Both T(H) and C(H) are useful in

describing a whole range of overland and groundwater flow behaviors.

The implicit finite volume method used to solve the partial differ-



ential equations is explained in detail by Lal (1998). Even if the mass
balance errors in the finite volume methods are small, computational er-
rors are present in all numerical models including finite volume models
because of errors of discretization. Following experiments are conducted
to determine this error.

NUMERICAL EXPERIMENTS

Unlike in the case of rectangular cells, a variety of cell sizes and shapes
are possible with finite volume models using triangular cells. In order to
study the error behavior, a confined ground water model was set up over
a 10 kmx 10 kmsquare domain using a triangular mesh of 3200 approxi-
mately isometric triangles. The software package GMS was used to gen-
erated a mesh of approximately isometric triangles of approximately the
same size. Figure 1 shows part of the exact mesh used in the experiment.
The spatial discretization is made dimensionless using the equation

0= kvAA 3)

in which k = wave number of the disturbance assuming isotropy; AA =
cell area. With rectangular cells, the definition reduces to @ = kAx.

In the experiment, a one dimensional boundary disturbance was
introduced into the domain by changing the water head of one of the
boundary walls in a sinusoidal manner. Water heads at different distances
away from the wall were measured over long periods and compared with
their analytical estimate to obtain the measured errors in the amplitude.
These errors were then compared with analytical error estimates assum-
ing a uniform mesh (Lal, 2000). The analytical expression for the head
IS

H(x,t) = Hoe ®sin( ft — kx) (4)
in which, f = frequency of the boundary disturbance in radians per sec-
ond; Ho = amplitude of the disturbance; x = distance away from the
boundary; k= 4/ fsc/(2T). The analytical expression for maximum nu-
merical error assuming a uniform mesh is (Lal, 2000).

ke 2ke
eT(X) = WX = Wx (5)

in which, e1(x) = maximum error in the amplitude at a distance x; Y =
fAt = dimensionless time step; At = time step; € = maximum error



per time step as a fraction of the amplitude; B = KAt/(scAA); and B =
W/ (2¢?) for the boundary disturbance problem. Values of € can be ob-
tained using algebraic equations presented by Lal (2000).

The first numerical experiment was carried out to compare numer-
ical errors of an actual model run with the numerical errors computed
using the analytical equation (5). Part of the mesh used in the numerical
test bed is shown in Fig. 1. A confined aquifer of transmissivity of 2.0
/s was used in the test bed. As the wall head boundary condition, a
water head varying sinusoidally with an amplitude of 100 m and a pe-
riod of 20 hours was used. In the model simulation, At = 1 day was used.
The mesh was used to obtain the average v/AA as approximately 152 m.
Figure 2 shows the plot of the amplitude with the distance from the wall
boundary. The analytical amplitudes are shown with a continuous line.
Table 1 also shows the amplitudes obtained with the RSM model. To ob-
tain the analytical solution, @ = 0.06481, y = 0.31459, 3 = 37.396, and
€ = 0.011291 (from Lal, 2000) was used. Both the figure and the table
show how the absolute error increase and decrease with distance from
the wall that is disturbed. Figure 2 shows that the maximum numerical
error of the RSM model can be explained using the analytical expression.
Figure 3 also shows that variation of the numerical error as a fraction of
the amplitude varies as a straight line with the distance.

Since actual model error as a fraction of the amplitude varies lin-
early with distance from the boundary as shown in Fig. 3, it becomes
possible to use its slope to obtain the value of € using (5). This value
can be compared with the analytical estimate of €. In Fig. 3, the slope
computed using least square best is 3.05274 x10~°. Equation (5) can
be used with k = 0.0004264, and ) = 0.31459 to obtain € as 0.011246.
This agrees with € computed analytically as 0.011291.

The maximum analytical error per time step € for any spatial dis-
cretization ) and temporal discretization ¢ can be made into a contour
plot as in Figure 4. The value of € obtained from just one model run of
the RSM can also be plotted as a dot on the same figure. Values of € are
useful in determining numerical errors under a variety of situations. If
the error is too large for given discretizations, the discretizations have to

iv



Table 1. Detatils of one experimental model run

cell | distance | model ampl. | anal. ampl. error €T
ID X (m) Yobs, M Yana, M | €a, (M) | = €a/Yana
wall 0.0 100.00 100.00 | 0.000 0.0000
1179 67.3 96.93 97.17 | 0.243 0.0025
1181 271.1 87.89 89.08 | 1.197 0.0134
1182 345.3 85.07 86.31 | 1.236 0.0143
1302 737.8 72.10 73.01 | 0.911 0.0125
1424 | 12525 56.00 58.62 | 2.625 0.0448
1921 | 2451.8 32.62 3515 | 2534 0.0721
2225 | 4961.8 10.20 12.05| 1.852 0.1537

be changed. Errors in many types of 1-D and 2-D problems are listed in
the paper by Lal (2000).

The results of the model runs can be used also to verify the way in
which the maximum error due to a boundary disturbance behaves spa-
tially. In order to obtain the analytical solution to this problem, (4) and
(5) can be used to obtain the maximum absolute error €5 as H(X,t)er ().

83_ == Hoe —X (6)

Figure 2 shows this behavior in which the the absolute error increases
and then decreases with distance from the boundary. The maximum of
this function can be obtained by differentiating (6).
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or approximately €pax = 0.736Ho% which takes place at a distance Xpmax =
1/k from the boundary. When applied to the numerical experiment with
the RSM, k = 0.0004264, and therefore Xmax = 2345.3 m for the error to
be maximum. The maximum of the maximum error €yax = 0.736Hpe /Y
= 0.736%100%0.0112911/0.314159 = 2.644 m. It has been shown ear-
lier (Lal, 2000) that the error associated with the MODFLOW model
(McDonald and Harbough, 1988) behaves in the same way.

(7)

Emax =

SUMMARY AND CONCLUSIONS
Numerical error analysis of the Regional Simulation Model (RSM) was



carried out by applying a sinusoidal water head fluctuation to the bound-
ary of a simple model setup. The model error was computed using an
analytical solution developed by Lal (2000) as the exact solution. In ap-
plying the method, the spatial discretization of triangles was measured
as the square root of the cell area. Results of the study show that the
maximum numerical error as a fraction of amplitude varies linearly with
the distance from the boundary as predicted in the analytical derivation.
Results also show that the numerical error of RSM agree closely with
the analytical estimates. These results are extremely useful in model de-
velopment because they verify that the numerical methods are properly
applied. If the model errors are larger or smaller, there is a problem with
the implementation of the numerical method.

Results of error analysis can be used in designing the cell size and
the time step length. If the numerical error is large, the discretization has
to be nade smaller intil the required solution can be properly represented.
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Figure 2: Variation of the amplitude and the maximum absolute numerical error with

distance
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Figure 4. Contours of maximum numerical error per time step € (%) against dimen-
sionless spatia and temporal discretizations ¢ and Y



